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SUMMARY

The objective of this research is to reduce the end-point vibration of a large,
teleoperated manipulator while preserving the usefulness of the system motion. A master
arm is designed to measure desired joint angles as the user épeciﬁes a desired tip motion.
The desired joint angles from the master arm are the inputs to an adaptive P.D. control
algorithm that positions the end-point of the manipulator. As the user moves the tip of
the master, the robot will vibrate at its natural frequencies which makes it difficult to
position the end-point. To eliminate the tip vibration during teleoperated motions, an
input shaping method developed by Singer and Seering from MIT is presented.

The input shaping method transforms each sample of the desired input into a new
set of impulses that do not excite the system resonan-c;es. The method is explained using
the equation of motion for a simple, second-order system. The impulse response of such
a system is derived and the constraint equations for vibrationless motion are presented.
To evaluate the robustness of the method, a different residual vibration equation from
Singer’s is derived that more accurately represents the input shaping technique. Tﬁe
input shaping method will be shown to actually increase the residual vibration in certain
situations when the system parameters are not accurately specified. Finally, the
implementation of the input shaping method to a system with varying parameters is

shown to induce a vibration into the system. To eliminate this vibration, a modified



command shaping technique is developed. The ability of the modified command shaping
method to reduce vibration at the system resonances is tested by varying input
perturbations to trajectories in a range of possible user inputs. By comparing the
frequency responses of the transverse acceleration at the end-point of the manipulator,
the modified method is compared to the original P.D. routine. The control scheme that
produces the smaller magnitude of resonant vibration at the first natural frequency is

considered the more effective control method.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation for this Research

The industrial applications for robots with a relatively large workspace has
increased significantly over the past few years. Most of the attention has been focused
on the assembly of large space structures, the welding of airplanes and automobiles, the
weaving of new composite structures such as submarines and, more recently, the
inspection and removal of hazardous waste [9,22,23,48]. With an expanded workspace,
the robot is often required to move large distances in a relatively short amount of time.
The demand for a high speed robot with a large workspace usually requires long,
lightweight links which are inherently flexible. This flexibility allows the link to store
potential energy which is often returned to the system in the form of kinetic energy.
Therefore, the end-point vibration of the manipulator, as well as uncertainty in the end-
point position, can be directly related to the inherent flexibility of the links.

For space and hazardous waste environments, a remote operator is needed to
perform most of the required tasks. The user often dictates the motion of the robot
through the workspace and then precisely positions the end-point of the manipulator to
perform a task. A teleoperated system is ideal for the user interaction requirements.

Through the use of a joystick or other input device, the operator can specify the desired

1



trajectory in either end-point coordinates or joint coordinates. Therefore, the user’s
desired motion can be transformed into actual robot motion.

This research addresses the end-point vibration of a large, teleoperated
manipulator. Present methods for reducing end-point vibration are discussed to

determine the appropriate strategy to reduce tip vibration of the manipulator.

1.2 Previous Metbods for Reducing Vibration

The problem of reducing end-point vibration is not a new one. Many different
methods, both passive and active, have been investigated to eliminate unwanted
oscillations. The most crude passive approach to eliminate vibration is to simply wait
for the vibrations to stop after a desired motion. NASA originally used this method on
their Space Shuttle Remote Manipulator System but found it to be costly in completion
time requirements. Alberts and Book [1,2] experimented with a thin film of visco-elastic
material that is applied to the structure surface and then covered with a very stiff
constraining layer. When the beam is deformed, the visco-elastic material is sheared and
thus energy is dissipated. The major drawback is that the vibrations are not eliminated
but just reduced in amplitude.

The majority of the strategies to eliminate end-point vibration involve active
control structures. Different states of the system are measured and control efforts are
based upon them. As with many effective control schemes, an accurate mode! of the
system is required. Book [6] used distributed and lumped parameter models for each

arm segment. The models are combined using homogeneous transformations and then



numerical techniques are used to derive frequency domain information. Book [7] later
derived the recursive dynamic equations for a flexible manipulator. However, the
recursive method must be evaluated symbolically to obtain the dynamic equations in
closed form. Finally, Book [8] reviews the mathematical representations commonly used
in modeling flexible systems.

Hastings and Book [17] extended active control methods by including strain
feedback in the control structure. Their experiments showed that strain feedback can
reduce the residual vibration during settling time. However, they concluded that the
vibrations are inevitable with a feedback control scheme because the feedback control
signal contains high frequency components, which excite the system resonances.

Montgomery, Ghosh and Kenny [33] propose torque-wheel actuators to reduce
overshoot in the Space Shuttle Remote Manipulator. Their method uses an inertial device
to assist in reducing end-point vibration when following telerobotic commands. The
results from their experiments indicate that the torque-wheel can produce a vibration of
significant amplitude to diminish the original vibration while under teleoperated control.
However, this procedure requires external devices to be mounted on the robot and is
shown to work only for an abrupt stop command.

Tewani, Walcott and Rouch [45] suggest using a dynamic absorber as a viable
means for suppressing vibrations of a system. The method involves the combination of
passive elements, active elements and an absorber mass to apply a controlling force to
the system. Using a disturbance rejection control strategy, the amplitude of vibration

was significantly reduced. However, this method would be difficult to implement on a



teleoperated system because the disturbances are never known exactly. By implementing
a Linear Quadratic Regulator (LQR) controller, a reduction in amplitude of vibration was
still observed.

Presently, Lee and Book [28,29] are studying the effects of inertial forces to
suppress the vibration of a large, flexible robot. By mounting a small robot at the tip
of the large robot, damping forces are generated to accommodate the inertial forces
generated when the tip vibrates. Simulation results have shown the effectiveness of the
damping forces and the controller designed. Using deflection rate control, vibrations are
damped in half the time required with passive control. Currently, Lee is conducting
experiments using the prescribed robot configuration to verify simulation results.

Singer and Seering [39,40] presented a method of generating shaped command
inputs to reduce end-point vibration. Unlike the previous methods which measure system
states to reduce vibration, Singer’s method utilizes system information to alter input
commands to the actuators. Each commanded impulse is appropriately distributed into
a multiple impulse input whose characteristics are based on the system’s natural
frequencies and damping ratio. This procedure, in effect, filters out frequency
components near the system’s resonances to avoid exciting the system. Later, Singer and
Seering [38,42] show that the input shaping idea is effective with teleoperator inputs.
However, their system was limited to a beam operating in the horizontal plane so that

the natural frequency was constant for a given experiment.



1.3 Characteristics of a Flexible System

The equations of motion of a flexible system can be quite complex when
compared to the rigid body counterpart. Lagrange’s equations of motion produce an
infinite number of vibrational modes and frequencies for just a simple Euler beam
(14,31,32). The ability to regulate these modes is limited by the bandwidth of the
control system. Therefore, only a finite number of modes of a flexible system can be
controlled.

Nonlinear effects due to large tip velocities may also need consideration. The
centrifugal and Coriolis accelerations may generate additional tip vibration that is not
controllable with conventional feedback schemes. The deflection of the manipulator due
to vibration may also exhibit nonlinear properties if the amplitude of vibration is large
relative to the link length.

The nonminimum phase characteristic of flexible systems must also be considered
for tracking teleoperated inputs. Kwon and Book [24,25] show that the transfer function
between the input at a joint and the end-point position has zeros with positive real parts.
These right-half complex plane zeros cannot be canceled using conventional feedback
control algorithms. This prevents the feedback controller from having asymptotic
tracking stability.

Finally, the issue of noncolocated control must be mentioned. Noncolocated
control occurs when the control effort and the sensing of the system states do not occur
at the same point in the system. An example is when a robot is actuated at the joints but

the end-point position is sensed at the tip. Often, nonminimum phase characteristics arise



when a system is noncolocated. Therefore, a noncolocated, state feedback control

scheme must be designed with some consideration for system instability.

1.4 Method of Approach

The main focus of this research is the alleviation of end-point vibration in a
telerobotic system. To avoid the complex derivation of dynamic equations, an adaptive
control strategy derived by Yuan is used [49,50]. His controller was based on the error
between the desired joint angles and the actual joint angles. By devising an operator
input device that commands desired joint angles, Yuan's controller was easily
transformed to work as a teleoperated control system.

This control structure is then compared to a control scheme that performs input
shaping to the joint error signal. First, the original input shaping method developed by
Singer is implemented and shown to produce a vibration in the system. To prevent this
vibration, a modified command shaping technique is developed.

The advantages of using this new modified method over the original adaptive
control scheme are then examined. By giving the two control methods identical input
trajectories, the frequency responses of the transverse acceleration at the end-point of the
manipulator are compared. The control scheme that produces the smaller magnitude of
resonant vibration at the first natural frequency of the system is considered the more

effective control method.



CHAPTER II

EXPERIMENTAL TEST BED

2.1 Description of the Robotic Manipulator

The flexible manipulator used in the Flexible Automation Laboratory at Georgia
Tech was designed by a Master’s student in 1986. -Wilson [47]) designed the robot to
carry a payload of around 100 pounds, to reach second story windows and to be
lightweight. To meet the design specifications, a two degree-of-freedom manipulator was
built using 10 feet long, aluminum links. By choosing aluminum, the structure remains
lightweight with good strength properties.

The manipulator, named RALF (Robotic Arm, Large and Flexible), is shown in
Figure 2.1. Both links are maneuvered using single ended hydraulic actuators. Actuator
one is attached directly to a collar on link one while actuator two positions link two using
a four-bar parallel mechanism. This parallel mechanism gives much needed support to
allow the robot to lift the 100 pound payload requirement. The mechanism also stiffens
the overall structure which raises the system natural frequencies. However, this parallel
linkage produces nonlinear effects (e.g. dead bands) and couples the dynamics of the two
links together.

The nonlinear dynamic equations of motion were derived by Lee [26] using

Lagrange’s equation. These nonlinear equations were evaluated in symbolic form and
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then, using single value decomposition, the constrained dynamic system was solved.

Figure 2.1 Two-Link Flexible Manipulator

Since hydraulic actuators are used, the joint motions are limited. Joint one has
a range from 35° to 110°, which is measured from the horizontal plane. Joint two is
limited to angles of 55° to 108° when measured relative to link one. Even with limited
joint motion, the workspace, shown in Figure 2.2, is still quite large. Notice how the
first link of RALF is able to pass through the vertical axis, y,, that intersects joint one.

This allows the center of gravity of the manipulator to move from one side of the axis



to another which can create unusual dynamics for the actuator connected to link one.
Since the forces required for a given motion are different in each region, the actuator

dynamics play an important role in the frequency analysis conducted in Chapter IV.

(95.0,192.1>

(-162.4,141.9
(~0.8,145.8)

(-141.0,36.9

Figure 2.2 The Workspace of RALF

Now that the physical structure of RALF has been discussed, the forward and
inverse kinematics are presented. The derivation of the kinematic equations is best
handled using matrix transformations. By representing each degree of freedom of the
manipulator with an individual coordinate frame, a matrix transformation is created
{11,44]. Each matrix transformation relates the current coordinate system to the previous
one. The overall transformation, relating the end-point to the base of the robot, is
obtained by multiplying the individual matrix transformations together. For a flexible
system, Book [7] demonstrated that the overall matrix transformation is actually the

superposition of a rigid body transformation and a flexible transformation. This stems



from the fact that the position of a point in a flexible system can be described using rigid
body coordinates along with the modes of vibration. The rigid body coordinate frames

used for RALF are shown in Figure 2.3.

Figure 2.3 Coordinate Frames for RALF

For slow motions, the flexible modes of vibration may not be excited. In this
situation, the rigid body transformations give a reasonable approximation of the tip
position. Since modeling of the flexible dynamics is not the main emphasis of this

research, only the rigid body transformations are considered. The rigid body
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transformations for RALF are given in Appendix A.

The forward kinematics problem can be stated as follows: given the joint variables
of the robot, determine the position and orientation of the end-effector. For RALF, only
the (x,y) coordinates of the end-point are important. From the overall matrix
transformation given in Appendix A, the last column yields the desired kinematic

equations. The forward kinematic equations are

x = Lycos(8, +8,) + L,cos(8,) - L,sin(8,) @.1)

y = L,sin(6,+0,) + Lsin(8,) + Lycos(8)). (2.2)

The inverse kinematics problem is more dif_‘ﬁcult than the forward kinematics
solution. The inverse situation simply stated is: given a desired position and orientation
for the end-effector, de;ermine all the possible joint configurations that achieve the
desired position and orientation. Since the resulting kinematic equations are nonlinear,
there is no guarantee of finding a unique solution or even finding a real solution at all.

The existence of a solution defines the workspace of the manipulator. The lack
of a solution indicates that the desired position and orientation are not within the robot’s

workspace.
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From Appendix A, the inverse kinematic equations are

2,52 2
KL, + L,y 43(L{+L3)-K° 23

6, = atan2 —
KL, -Ly4L (L +13)-K*

6, = awanz[ =L 1 Ly) ¥ (TyeosB,) - 1) 2.4)
*(Lcos(8,) + L) +y(L,sin(8,) ;)

where

E=x2+y-L-1-1. 28))

2.2 Design- of an Input Device

The main function of the input device in teleoperation is to assist the operator in
accurately maneuvering the end-point of the manipulator. By sensing the user’s desired
motions, the device should convert these motion commands to movements of the end-
point. The design of such an input device should be functional and suitable for the
specific application.

Fischer, Daniel and Siva [13] discuss many guidelines for the design of input
devices for use in teleoperation. The engineering group emphasized the necessity of the

feedback of key information such as position and forces to avoid damage to the robot.
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Since bracing of the manipulator is not considered and the workspace of RALF is
unobstructed, only the relative position of the tip in the workspace is necessary.

Since RALF has only two degrees of freedom, the design of the input device was
quite simple. A two link scaled model of RALF was designed with linear potentiometers
placed at each joint to record the user joint commands. By moving the master arm, the
operator can think of positioning the end-point of the manipulator in Cartesian
coordinates while the input device functions in joint coordinates. This strategy of
measuring joint commands directly works well with the adaptive control routine
developed by Yuan discussed in Chapter 1.

The overall teleoperated system designed to position the end-point of RALF is
shown in Figure 2.4. The workspace of RALF is mounted as a backdrop to give the
operator a scaled picture of the allowable workspace. This arrangement makes it easier

for the user to make relative maneuvers within the workspace.

2.3 Interfacing the Telerobotic System

The coordination of the master arm with the slave arm in a telerobotic system is
important to produce desired results. Fiala [12] describes a logical architecture for
connecting teleoperation input devices to the telerobotic control hierarchy. A method of
handling control information is presented which allows many system components to
access the information simultaneously. He also explains the two main classes of

teleoperation input devices, joint-space devices and Cartesian devices.
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Figure 2.4 Teleoperated System

The effects of varying system parameters on the ability of the operator to position
the end-point of the manipulator should be understood. Hannema and Book [15] discuss
moving the end-point of a manipulator from one point to within a certain tolerance -band
surrounding a desired point. They examined the effects of backlash, Coulomb friction
and bandwidth on the ability of an operator to position the end-point of a manipulator.
They showed that a linear model, relating the task parameters of distance and width to

performance in task completion time, could be made. Their experimental results

14



revealed an improvement in task completion time as the joint bandwidths were increased
from 1 to 3.5 Hz.

Uebel, Ali and Minis [46] also investigated the effects of bandwidth on operator
performance using a Robotics Research Corporation slave arm with a Kraft Telerobotics
master arm. Varying the joint bandwidths from 0.5 to 2 Hz, experienced operators
performed five repetitions of a peg-in-a-hole task for three different bandwidths. Their
results also show a decline in operator performance as the bandwidth is decreased.

The final issue that must be considered when interfacing telerobots is the effects
of time-delay. Niemeyer and Slotine [34] address the problem of time-delays in
telerobotics by using an adaptive control strategy. By using an adaptive controller, the
manipulator bandwidth is not limited to the bandwidth imposed by the transmission
delays. However, the type of data that is transmitted (e.g. forces, torques) can alter the

behavior and stability of the overall system.

2.4 System Hardware

The telerobotic system used for experiments at Georgia Tech consists of the input
device discussed in Section 2.2 functioning as the master, and RALF as the slave. The
main control unit is a MicroVAX II made by Digital Equipment Corporation. The
necessary connections to the sensors, hydraulic valves, amplifiers and master arm are
made using an analog/digital (A/D) board made by Data Translation (see Appendix C for
equipment list). The A/D boards can sample a single channel at 6000 Hz. However,

eight channels sample at only 300 Hz. A second A/D board is available but a one
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millisecond delay is required to switch from one board to the next board.

After the computation time for the control routines is considered, the sampling
frequency is reduced to 50 Hz. The frequencies of RALF to be controlied range from
3.7 t0 5.5 Hz. From Nyquist criterion, the A/D sampling rate is still sufficient to
control these system frequencies.

The adaptive control algorithms, the modified command shaping routines and the
A/D routines were written in VAX C. Previous control routines were written in
FORTRAN (FORmula TRANslation) and had sampling rates of around 150 Hz.
Obviously, the FORTRAN code runs almost three times faster than the C code. Test
programs verify that the MicroVAX II machine is optimized to run Fortran code. The
VAX C language was chosen for portability to personal computers (PC) where future

control will be implemented.
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CHAPTER Il

MODIFIED COMMAND SHAPING

3.1 Historical Perspective

The original command shaping technique to reduce system vibration was
introduced by Singer and Seering in 1988 [39]. The procedure involved modifyiﬁg
desired system inputs so that a system comipletes the requested motion without vibration.
The method was tested on a computer model of the Space Shuttle Remote Manipulator
System (RMS) developed by Draper Laboratories. Simulation results from a variety of
commanded moves suggested that significant vibration reduction can be obtained using
the method. Subsequent documents [40,41] verified the ability of the method to reduce
end-point vibrations.

By 1989, Singer showed that the procedure worked with multiple mode systems
and was effective on telerobotic systems as well [38,42]. Singhose, Seering and Singer
expanded the method using a vector diagram approach to determine the appropriate
shaping strategy given some allowable residual vibration amplitude [43]. Hyde and
Seering [21] extended these results to the solution of a group of simultaneous non-linear
impulse constraint equations.

Recently, the input shaping method was implemented on an overhead crane to

reduce oscillatory motion of the object being moved. Noakes and Jansen [335]
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generalized the theory associated with oscillation-damped trajectories to a system with
simply suspended loads. Previously, a crane operator moved the suspended object slowly
and allocated time for pendulum oscillations to damp out. After implementing the
oscillation-damping algorithms, they were able to position 55-gallon drums in a U-shaped

path with insignificant oscillations.

3.2 Derivation of Constraint Equations

The original input shaping method involves the manipulation of a desired input
command. Each sample of the input command is replaced by a sequence of impulses that
do not excite the system natural frequencies. Knowing the impulse response of the
system, constraint equations can be derived that yield the appropriate amplitudes and
starting times of the impulse sequence.

The constraint equations can be derived from the impulse response of a simple

linear, time-invariant second-order system. Consider the spring-mass-damper system

!

F(t)

Figure 3.1 Second-Order System
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shown in Figure 3.1. The vibratory response of this system to an impulse input is

Aw e telt)

x(1) = —— sin(0,/1- C (- 4,)) (3.1)
1-¢

where A is the amplitude of the impulse, w, is the natural frequency of the system, { is
the damping ratio of the system, ¢ is the time and 1, is the time when the impulse occurs.
This result is derived in Appendix D. Using Equation (3.1), the position response, x(¢),
for the second-order system is specified for time, 7 2 #.

If the system is given a two impulse input, the vibratory response is

x(t) = B;sin(at +¢,) + B sin(at +4,) (3.2)
where
B, = A -tustete) (3.3)
1-¢%

e=0, 1- cz (34)

& = - ©,t¥1- 7. 3-3)
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The two impulse response given in Equation (3.2) can be simplified to yield

x(f) =B, sin(az + §) (3.6)

where

B,.,= /[Bicos(d,) + B,cos(®)T’ + [ B,sin(¢) + Bsin(é,)]* @7

tan ! Bysin(®,) + B,sin(d) . (3.8)
B,cos(9,) + B,cos(d,)
The summation of two sinusoids is proven in Appendix E.
Since the system is linear and time-invariant, the results from Equations (3.7) and
(3.8) can be generalized to the N impulse input case. The amplitude and phase of

vibration for the N impulse input case are

N 2 N 2
B,,- J L{; B,cos(obk)] . g Bksin(da,)] 3.9)
N
Y. B;sin(¢,)
¥ =tan™! L S— (3.10)
N
E B,cos(¢,)

k=1

20



Since the purpose of the input shaping method is to eliminate vibration, the
amplitude of vibration, Equation (3.9), must equal zero after the last impulse occurs.
This only happens if both the squared terms are independently zero since the sine and

cosine functions are linearly independent. The resulting equations are

B, cos($,) + B,cos(¢,) +... + Bycos(dy) = 0 (3.11)
B,sin($,) + B,sin(d,) +... + Bysin($y) = 0 (3.12)
including
B, = xn ,-tetured (3.13)
1-¢?
and

b = - uu‘blﬁ’ 3.14)

where A4, is the amplitude of the k® impulse, ¢ y is the time when the final impulse

occurs and 7 4 is the time when the k* impulse occurs.
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Substituting the equations for B, and ¢, into Equations (3.11) and (3.12), the

constraint equations become

N
Y At W o5 (0,1 - 21y,) = 0 (3.15)
k=1
N
Y A et Win(o 1 - 11y, = 0. (3.16)

k=1

For the constraint equations to produce the correct impulse sequence to eliminate
vibration, the natural frequency and damping ratio of the system must be known exactly.
Since these system characteristics are not precisely known, their robustness is included
as a constraint. The robustness constraint with respect to natural frequency is found by
taking the partial derivative of Equations (3.15) and (3.16) with respect to w, and setting
the result equal to zero. Likewise, the robustness constraint with respect to damping
ratio is found by taking the partial derivative with respect to { and setting this result
equal to zero. After performing the described differentiation, the resulting constraint
equations are the same. Therefore, setting the partial derivative with respect to w, equal
to zero is equivalent to setting the partial derivative with respect to { equal to zero [38].

These new constraint equations form the first-derivative robustness criterion.
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Mathematically, the equations for the first-derivative robustness criterion are

N
Y Aty e W oo (w,y1-021,) = 0 (.17
k=1
N
Y Aty e W sin(w 1-(21,) = 0. (3.18)

k=1

Higher derivative constraints are obtained by differentiating Equations (3.15) and

(3.16) to the desired order. The m 'f-derivative robustness constraint equations are

N
EAk(tot)-e-cu.(‘"-'“)COS(ﬁ)' /l - c: tOk) =0 (3.19)
k=1
N
EAk(tOk)ne‘Cﬂ.(m-‘u) sin(w. /1 - cz tOk) =0. (320)

k=1

The length of the impulse sequence is now determined by the number of
unknowns in a given set of constraint equations. For any given set, there will always be
two more unknowns than equations. To alleviate this dilemma, the starting time of the
first impulse is arbitrarily chosen to be time zero and the amplitudes are normalized so
that they sum to one. This particular normalization ensures that the overall amplitude

of the new impulse sequence is the same as the amplitude of the desired input command.
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3.3 Calculation of Impulse Amplitudes
Now that the robustness constraint equations have been determined, the impulse
amplitudes and starting times can be solved. For the two impulse input, the zero *-

derivative constraint equations are utilized, which are

B, cos(¢,) + B, cos(d,) = 0 (3.21)

B, sin(¢,) + B,sin(¢,) = 0 (3.22)
and.

Bk . Akwl e-(u,(r,-t“)’ (3.23)

where A, is the amplitude of the k * impulse, ?  is the time when the final impulse
occurs (i.e. 7,,) and ¢, is the time when the first impulse occurs.

Since any equation involving sines and cosines is transcendental, there are an
infinite number of possible solutions to Equations (3.21) and (3.22). Therefore, only the
solution that yields the shortest time duration and a positive amplitude for all the
impulses is chosen. For the two impulse input case, a complete derivation of the solution

process is furnished in Appendix F.
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The resulting solution for the two impulse case is

1
Ay = —— (3.24) 2y = 0 (3.25)
A, = M (3.26) T = — (3.27)

where

i (3.28)

The ability of the input shaping method to eliminate vibration can be demonstrated
graphically. Consider the input in Figure 3.2 whose characteristics are given in

Equations (3.24) through (3.27).

L1
T » time

01 02

Figure 3.2 Two Impulse Input
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The second-order system response to each of the individual impulses in Figure 3.2 is

shown in Figure 3.3.

System Response to Each Impuise
@ * On

08
Response to First impuise
- ===~ Response to Second iImpuise

Amplitude (in)

1 16 20
Time (sec)

Figure 3.3 System Response to Each Impulse

Since the system is linear and time-invariant, a linear combination of two inputs
results in a response that is a linear combination of the two responses. Therefore, the
net system response to the two impulse input is shown in Figure 3.4. Since the natural
frequency and damping ratio of the system are exact, there is no vibration of the system
after the second impulse. The effects of parameter uncertainty on the amount of residual

vibration is discussed in Section 3.4.
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Overall System Response to Two impulse Input
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Figure 3.4 Overall System Response to Two Impulse Input

Single Impulse Response vs. Two Impulse Response
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Figure 3.5 Single Impulse Response vs. Two Impulse Response
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Figure 3.5 shows a comparison of the impulse response of a second-order system
to the two impulse input response. Since the inputs have the same amplitude, i.e. they
sum to one, the responses can be compared to determine which is more desirable. For
this simple case, the two impulse input is preferred since it eliminates the vibration after
the second impulse occurs. The ability to completely eliminate the vibration is attributed
to an ideal second-order system model which provides exact system parameters.

To solve the three impulse input case, the zero® and first derivative constraint
equations are evaluated. The complete derivation for the three impulse case is in

Appendix G. The solution for this case is

1
A = ————MM 3.29 = 3.30
a,-—2M @3y fy = ———  (3.32)
1+2M + M? wy1-¢2
2 2x )
A, = _M___ (333 fg = —/——- (3.39)
1+2M+M? wy1-¢2
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Equations (3.29) through (3.34).

Figure 3.6 shows the three impulse input case whose characteristics are given in

input
A 2
A 1
Ll F
-tox -toa .t03

» time

Figure 3.6 Three Impulse Input

Finally, the four impulse input case is solved. To obtain the amplitudes and

starting times of the four impulses, the zero % first and second derivative constraint

equations must be solved. Appendix H contains the complete derivation for this case.

The results from this appendix are

A = 1 (3.35)

1+3M +3M*+ M?

A, = 3 (3.37)
1+3M +3M*+ M*®

29

=0 (3.36)



3M2 2=

A, = (3.39) tyy = ———  (3.40)
1+3M+3M*+ M? w1~
M3 - Ixn
A, = (3.41) b = ———=- (342
1+3M +3M*+ M? w,1-3

Figure 3.7 shows the four impulse input whose characteristics are given in Equations

(3.35) through (3.42).

input
P Aa A
A, 3
T —» time
tm tOE t03 -to4

Figure 3.7 Four Impulse Input
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3.4 Robustness of Constraint Equations

In Section 3.3, the two impulse input completely eliminated the vibration when
the natural frequency and damping ratio of the system were known exactly. For most
physical systems, the exact parameters are seldom known. Thus, there is some residual
vibration after the last impulse has occurred.

To determine the amount of residual vibration, a vibration error expression must
be defined. The error, denoted err, is written as the ratio of the actual multiple impulse
response magnitude to the actual impulse response magnitude of the second-order system.
The error expression is defined only for time after the multiple impulse input has
occurred to ensure that the system has received identical amplitude inputs.

Mathematically, the vibration error is written as

rr = Jli’:}_((:_))ll , for-t21,, (3.43)

where k is the number of impulses. The residual vibration is just the vibration error
expressed as a percentage.

The deviation in the actual system parameters from the design parameters can now
be quantified using Equation (3.43). The actual system response to a multiple impulse
input can be computed and related to the actual impulse response of the second-order

system. By studying the deviations in the natural frequency and damping ratio from the
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design parameters, their effects on the vibration error can be better understood.

This new definition of the vibration error expression is much different than the
one originally stated by Singer. He defined the vibration error expression as “the
maximum amplitude of the residual vibration during a move as a percentage of the
amplitude of the rigid body motion.” This definition is expressed mathematically with
Equation (3.9) divided by the sum of all the 4, [39], which is always unity. The main
problem with Singer’s definition is that it does not accurately represent the ability of the
input shaping method to reduce vibration. In some instances, the input shaping method
can actually increase the residual vibration of a system.

To prove this point, the deviation in actual natural frequency, w,, from the design
natural frequency, w,, is analyzed. The vibration error defined by Singer for the two
impulse input case is shown in Figure 3.8. Singer states that an acceptable vibration
error level is less that 5% residual vibration for a segond-order system. Therefore, the
two impulse input is robust for a frequency variation of less than 5%. From Figure 3.8,
the residual vibration curves decrease in magnitude for an increase in the value of
damping ratio, {. The graph also shows that the magnitude never exceeds 100% and
therefore the input shaping method can never increase the residual vibration of a system.
This implies that the input shaping method reduces residual vibration for any variation
in natural frequency. However, the new definition of residual vibration clearly shows

this is not the case.
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The vibration error from Equation (3.43) for the two impulse input case is

where w, is the actual natural frequency of the system and w, is the design natural
frequency of the system. Equation (3.44) is derived in Appendix 1. Figure 3.9 shows

the new vibration error as a function of normalized frequency, w,/w,.

Vibration Error vs. Normalized Frequency
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Figure 3.8 Vibration Error vs. Normalized Frequency
Singer’s Definition for Two Impulse Input
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Vibrotion Error vs. Normalized Frequency
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Figure 3.9 Vibration Error vs. Normalized Frequency
Two Impulse Input

The residual vibration now increases for an increase in damping ratio, {. This
fact may seem incorrect since the overshoot of a second-order system increases with a

decrease in damping ratio for a step input. However, analysis of the impulse response,

given in Equation (3.1), verifies the results displayed in Figure 3.9.

Figure 3.9 also shows that replacing the original impulse by a sequence of
impulses can actually have a negative effect if the actual natural frequency is over 1.5
times the design frequency. Figure 3.10 shows a second-order system response to a
single impulse input compared to a two impulse input when the actual natural frequency
is twice the design frequency. The residual vibration after the second impulse is actually
worse than if the system had only been given the single impulse. Therefore, input

shaping can have a detrimental effect when large errors in natural frequency are present.
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Single Impulse Response vs. Two Impuise Response
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Figure 3.10 Single Impulse Response vs. Two Impulse Response

Since the two impulse input case is only robust for deviations in natural frequency
of less that + 5%, the robustness of the three and four impulse cases is of interest.
Figure 3.11 shows the vibration error versus normalized frequency for the three impulse
input. For this case, the input is robust for deviations in natural frequency near + 10%.
However, the ability of the input shaping method to produce detrimental effects is much
more pronounced.

By separating the input into four new impulses, Figure 3.12 shows that the
method is robust for deviations in natural frequency close to + 20%. Nevertheless, the
possible adverse effects are even more noticeable. If the actual frequency is more than
40% larger than the design frequency (for = 0.2), then the input shaping method is of

no practical use.

35



Vibration Error vs. Normolized Frequency
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Figure

3.11 Vibration Error vs. Normalized Frequency
Three Impulse Input
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3.12 Vibration Error vs. Normalized Frequency
Four Impulse Input
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The input shaping method must also be robust for deviations in damping ratio.
Section 3.2 stated that the derivative of the constraint equations with respect to damping
ratio yields the same constraint equations as the derivative with respect to natural
frequency. Therefore, robustness in damping ratio is already accomplished when
robustness in natural frequency has been considered. Figure 3.13 shows the vibration

error versus normalized damping ratio for the multiple impulse cases.
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Figure 3.13 Vibration Error vs. Normalized Damping Ratio

To evaluate the error expressions for the deviation in damping ratio of a second-
order system (see Appendix J), a specific value of damping ratio is required. For this
example, the design damping ratio is 0.05. For all three input cases, large deviations in
damping ratio do not have a significant effect on the residual vibration. This fact is

comforting since the damping ratio for a complex system may be hard to measure.
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3.5 Position Dependent System Parameters

The robustness of the constraint equations, discussed in Section 3.4, demonstrated
the ability of the input shaping method to reduce vibrations even with deviations from
the design system parameters. However, Singer’s original input shaping technique does
not address the issue of changing system parameters. For RALF, the natural frequency
and damping ratio are functions of position, i.e. joint angles. Therefore, a modified
command shaping technique was developed to accommodate varying system parameters.

First, the implementation of the input shaping technique to a discrete-time system
is presented. Figure 3.14 shows a simple block diagram of the input shaping method.

For each sample of the input, N output impulses are generated. From Section 3.3, the

input LS. output

Figure 3.14 Input Shaping Block Diagram

time period between output impulses is the same. This time period, denoted delT, is

delT = — = — (3.45)
o Jy1-22

which is a function of both the natural frequency, w,, and the damping ratio, {.
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To utilize this time period information in a discrete-time system, the continuous-
time data must be represented in discrete-time. From discrete-time signal processing,
a continuous-time signal, x(7), is represented mathematically as a sequence of numbers,
x[n], where n is strictly an integer. To transform the continuous-time period delT into
a discrete-time period deln, the sampling rate of the discrete-time system, £, is used.

The equation to perform this transformation is

deln = int (delT * f,) (3.46)

where the ins function truncates the argument to an integer.

For the input shaping method, the discrete-time period, deln, never changes
because the system parameters are assumed constant. But when the input shaping method
is applied to a system that has time varying parameters, the continuous-time period, delT,
becomes time varying as well. A significant change in delT will result in a change in the
discrete-time period, deln, which produces an undesirable vibration in the system. The
amount of change in the continuous period that causes this change in the discrete period
is a function of sampling rate since deln is strictly an integer.

For example, a four impulse output, shaping scheme is applied to a system that
causes a change in deln from four to five. When each input sample is shaped into four
output impulses, the method would produce a steady-state impulse output shown in
Figure 3.15. Each output impulse is designated {a,b} where a indicates the discrete-time

location of the input sample responsible for the four output impulses and b indexes the
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four resulting output impulses. After examining Figure 3.15, it is obvious that the
change in deln has caused gaps in the output for discrete values of n. At n=4, for
example, only three impulses are contributing to the overall output. To make matters
worse, this problem is repeated five more times at a discrete-time period near the
system’s natural period. This phenomenon induces a vibration into the system that is
caused solely by the application of the input shaping method to a system with time
varying parameters.

This induced vibration is also present when the value of deln decreases. Consider
a four impulse output, shaping scheme that is applied to a system that causes a change
in deln from five to four. The resulting steady-state impulse output is shown in Figure
3.16. For this situation, a surplus of output impulses is generated at a discrete-time
period near the system’s natural period. These extra impulses also cause a vibration that
is produced by the input shaping method.

To eliminate the induced vibration, a modified command shaping method is
proposed to make the impulse output mo.re uniform when a change in deln in
encountered. To compensate for a change in the discrete-time period, extra impulses are
added for an increase in deln and impulses are removed for a decrease in deln. The
choice of which impulses are affected is based on the number of output impulses from
the shaping algorithm and the old and new values of the discrete-time period.

The modified command shaping method can be explainea by designating the
discrete-time value when the discrete period increases as n=0. For the next N-1 samples

of the input, i.e. 0 < n < N-2, the modified command shaping technique shapes each
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sample using both the old and new values of deln to create a smooth steady-state impulse
output. Using the new value of deln, the input sample is shaped to create N output
impulses that are added to the overall output at their respective discrete-time values.
Using the old value of deln, the same input sample is also shaped to create N output
impulses. However, only the last N-(n+ 1) output impulses are added to the steady-state
output at their respective discrete-time values. For discrete-time values of n 2 N-1,
each sample of the input is shaped normally using the new value of deln to generate the
N output impulses.

The modified command shaping method also works for a decrease in the discrete-
time period, deln. For this situation, the input sample is shaped only once using the new
value of deln to produce the four output impulses. Instead of adding all four of the
output impulses, only the first (n-+ 1) output impulses are added to the steady-state output
at their respective discrete-time values. By manipulating the overall output in this way,
the extra impulses that are added for the case when deln increases are the same impulses
that are removed when deln decreases.

One final case to consider is when the value of deln changes more than once
within one discrete-time period. For this situation, a new modified technique must be
devised. For instance, if the discrete-time period length changes from one value to
another and back again, the best method to smooth the steady-state output may be to
ignore the change in discrete period if it is relatively short.

To understand the modified command shaping procedure, consider the example

given in Figure 3.15. The value of deln increases from four to five for this input
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shaping scheme that produces four output impulses. Since N=4 for this case, the next
three (i.e. N-1) input samples will be shaped twice. At discrete-time n=0, the input
sample is shaped using the new value of deln (i.e. 5) to create four (i.e. N ) output
impulses that are added to the overall output. At the same discrete-time value, the input
sample is shaped using the old value of deln (i.e. 4) to create four (i.e. N ) output
impulses. However, only the last three (i.e. N-(n+1)) impulses are added to the overall
output at their respective discrete-time values. For the next discrete-time value, i.e.
n=1, the input sample is shaped using the new value of deln to create the usual four
output impulses that are added to the overall output. When the input sample is shaped
using the old value of deln, only the last two (i.e. N-(n+1)) output impulses are added
to the general output. This process of shaping the input samples twice is repeated until
the discrete-time value, n, is greater that N-2. After n > N-2, the shaping continues
normally using only the new value of deln to produce the output impulses.

This modified command shaping technique is demonstrated on the two examples
discussed previously when the number of output impulses is four. Figure 3.17 shows the
modified shaping technique implemented for the case when the discrete-time period
increases from four to five. The impulses due to the modified command shaping
technique are darkened to show emphasis only. Figure 3.18 shows the modified shaping
technique applied to the case when the period decreases from five to four. The impulses
that are created but not added are drawn in the figure without tails to distinguish them
from the normal impulses. The success of this modified input shaping technique is

discussed in Chapter V.
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Figure 3.15 Steady-State Output for an Increase in Discrete-Time

Period Using Input Shaping
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Figure 3.16 Steady-State Output for a Decrease in Discrete-Time

Period Using Input Shaping
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Figure 3.17 Steady-State Output for an Increase in Discrete-Time

Period Using Modified Command Shaping
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Figure 3.18 Steady-State Output for a Decrease in Discrete-Time




CHAPTER IV

DYNAMIC ANALYSIS OF RALF

4.1 Previous Frequency Analysis

The vibration analysis of RALF has been described by several investigators in the
last five years. Huggins and Lee have performed the most research on verification of
modeling methods and control algorithms for RALF. Huggins [19,20] conducted
extensive finite element analysis to verify mathematical and experimental models used
' to determine the system modes and natural frequencie#. Lee [26,27] derived a nonlinear
model of RALF and then verified it through simulations using TREETOPS, a computer
software package. However, these investigators only conducted research on a limited
workspace of RALF. For a teleoperated system, the frequency data for the whole

workspace is needed to implement the modified command shaping technique.

4.2 Experimental Setup and Procedures

The experimental determination of system resonances and damping ratios using
digital Fourier analyzers is well published. Ramsey [36,37] discusses the importance of
understanding the dynamic behavior of vibrating systems. Using Fourier analyzers, he
explains many effective measurement techniques for modal analysis of different vibrating

systems. The frequency response of a second-order system determined from several
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different test inputs is also presented and the trade-offs for each method is discussed.
Hewlett-Packard has published many application notes about using their Digital
Signal Analyzer (HP3562A) for modal analysis [3,4,5]. After reviewing these
documents, random noise was chosen as the input to determine the desired system
properties. Using the P.D. feedback control algorithm running on a MicroVAX to hold
RALF is a desired joint configuration, the random noise signal from the analyzer was '
added to the control signal to stimulate the system. The system was excited at the
control level instead of using an external shaker to include actuator dynamics that might
influence the results. The circuit that combined the two signals is shown in Appendix
K for reference. An accelerometer, mounted at the tip of RALF, measured the
transverse acceleration of the second link which was then recorded by the analyzer.
For a given joint configuration, the power spectrum of the acceleration signal was
averaged ten times to minimize noise effects. For thg power spectrum, the analyzer can
generate a second-order approximation for the pair of poles that correspond to the mode

of vibration of the system. The poles are presented in the form

s=Dzjf Hz. 4.1

From control theory, a pair of complex poles can be expressed as

s=-0fsjff1-0 Hz 4.2)

when0 < ¢<1.
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Comparing Equations (4.1) and (4.2), the natural frequency, f,, and damping ratio, {,

can be solved from the analyzer output by

2
1, = Jf2+D? 4.3) { = le.).pz' (4.4)

Notice that the analyzer output value f is the damped natural frequency. This value is
actually of more use in this form when the modified command shaping technique is
implemented in the controller. |

To obtain the desired frequency data, the workspace of RALF was divided up into
ten degree joint increments and the power spectrum of the acceleration was taken at each
location. Using Equations (4.3) and (4.4), the natural frequency and damping ratio of
the first mode of vibration were calculated from the power spectrum output of the

analyzer.

4.3 Modal Analysis _Results

The fundamental damped natural frequencies calculated from the analyzer as a
function of RALF’s joint coordinates are presented in Table 4.1. The fundamental
natural frequencies of RALF were also calculated and are given in Table 4.2. Finally,

the damping ratios were calculated from the analyzer output and are in Table 4.3.
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Table 4.1 Fundamental Damped Natural Frequencies vs. Joint Coordinates

| £ a2 6, (deg) H

70 80 %0 | 100 | 107

s2 | 517 | s19 | 546 | s.5

49 | 498 | 487 | 537 | 524

477 | 484 | 48 | 49 | 527

426 | 432 | 428 | 433 | 44

412 | 411 | 430 | 437 | 427

429 | 44 | 445 | 451 | 444

407 | 414 | 425 | 428 | 433

38 | 392 | 397 | 411 | 407

Table 4.2 Fundamental Natural Frequencies vs. Joint Coordinates

| £ &) 6, (deg) ﬂ
H & 70 80 | 9% | 100 107_l

0 | sa9 | 521 | 518 | s21 | 547 | 5.8

so | 494 | so1 | 501 | 49 | 537 | s.24

60 | 476 | 478 | 485 | 48 | so1 | 534

(df:lg) 70 429 | 429 | 434 | 430 | 435 | 442
80 | 38 | 413 | 412 | 44 | 438 | 428 |
F 90 | 425 | 43 | 441 | 447 | 452 | 445 |

100 | 40 | 400 | 416 | 427 | 43 | 435

413 | 412
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Table 4.3 Damping Ratios vs. Joint Coordinates

| ¢ 6, (deg)
107
0.107
0.027
60 1 0076 | 0.076 | 0.072 | 0.079 | 0.084 | 0.166
, d"’;g) 70 | 0.105 | 0.110 | 0.093 | 0.102 | 0.091 | 0.099
g0 | 0.08s | 0.083 | 0.082 | 0.076 | 0.071 | 0.065
90 | 0.093 | 0.084 | 0.078 | 0.083 | 0.062 | 0.063
100 [ 0.108 | 0.008 | 0.094 | 0.086 | 0.087 | 0.092
100 | 0.121 | 0.129 | 0.113 | 0.109 | 0.102 | 0.149

4.4 Curve Fitting of Experimental Data

The damped natural frequency and damping ratio data is not useful for control
purposes in tabular form. A look-ﬁp table to find needed values in a control algorithm
can demand lots of precious computation time which slows down the sampling rate of the
control system. Therefore, the data was curve fitted to shorten the computation time and

permit a faster sampling rate. Appendix L discusses the least-squares curve fit of the

experimental data.
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The polynomial regressions that were derived for the damped natural frequency and
damping ratio are

£,(6,,6,) = -0.421263 + 1.808663 - 2.14418, - 022296

4.5)
+ 1.454067 - 3.63926, +7.7830

£(6,,6,) = -0.426963 + 1.891863 - 2.71596, - 0.05336;

4.6)
+0.341007 - 0.61486, + 1.6762..

To determine how well the equations approximated the experimental data,
Equations (4.5) and (4.6) were evaluated at all of the joint positions. Each calculated
value of the damped natural frequency, f;, was then divided by the experimental value
of the damped natural frequency, f;, at the corresponding joint angles to create a
normalized frequency, f/f;. The normalized frequencies as a function of joint
coordinates is shown in Table 4.4. Using this normalized frequency, the correct number
of impulses can be chosen based on the robustness criteria in Chapter III.

However, the damping ratio normalization generates the most error and is actually
the determining factor for the number of impulses. Table 4.5 displays the normalized
damping ratios, {/{, versus joint coordinates . This normalized data is very random in
appearance which is a direct result of the way the analyzer linearly approximates the
damping ratio. Using the largest normalized ratio of 4.5, Figure 3.13 suggests that the

modified command shaping method should output four impulses to reduce vibration.
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Table 4.4 Normalized Frequencies vs. Joint Coordinates

H JSHa 8, (deg)

60 70 80 %0 | 100 | 107

40 | 0992 | 0998 | 1.02 | 1.03 | 0.990 | 1.06

so | 0.980 | 0980 | 0.994 | 1.03 | 0.949 | 0.978

60 1 0961 | 0.969 | 0.970 | 0.982 | 0.970 | 0.924

(d%g) 70 | 102 | 104 | 104 | 107 | 1.07 | 1.06

80 | 110 | 103 | 105 [100 | 102 | 105

%0 | 0956 | 0.956 | 0.949 | 0.956 | 0.958 | 0.978

100 I 0988 | 0.980 | 0.981 | 0.974 | 0.982 | 0.978

“ 1.00 | 1.02

Table 4.5 Normalized Damping Ratios vs. Joint Coordinates

It 8, deg) ﬂ

60 70 80 | 90 100 | 107

40 1.63 1.73 2.12 1.68 0.30 1.32

so f 124 | 1.06 | 0.846 | 0.950 | 449 | 413

'J 60 1.12 | 0.948 | 1.10 1.164 | 1.16 0.547
, d"elg) 70 { 073 | 0582 | 076 | 0825 | 100 | 0831 |
50 | 0917 | 0.783 | 0870 | 112 | 1.28 | 1.29 |
% | o921 |oses | 101 [ 111 | 1.8 1.45*

100 | 0913 | 0.875 | 0980 | 123 | 129 | 1.13
| f o940 | 0781 | 0952 | 111 | 124 o.so_ﬂ
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Now that the number of output impulses has been determined, the modified
command shaping technique can be implemented to reduce vibration. The modified
shaping method takes each input sample and replaces it with four output impulses that
do not excite the first natural frequency of RALF. The required values of damped
natural frequency and damping ratio needed to calculate the impulse amplitudes and their

starting times are found from Equations (4.5) and (4.6).



CHAPTER V

CONTROL IMPLEMENTATION AND RESULTS

5.1 Control Structure

The original input shaping method devised by Singer was entirely feedforward in
design [38]. The desired (x,y) coordinate positions were transformed into desired joint
angles using a Jacobian before applying the input shaping algorithm. This feedforward
scheme provides little robustness to noise disturbances or to model uncertainty. To
overcome these problems, Hillsley and Yurkovich [18] applied a composite control
strategy which utilizes input shaping with a feedback scheme.

The control design for RALF uses an adaptive; proportional plus derivative (P.D.)
feedback strategy derived by Yuan [49] with the addition of modified command shaping.
Yuan’s control algorithm was chosen because it compensates for unmodeled modes and
nonlinearities of the system. The modified command shaping technique is designed to
eliminate the first natural frequency of RALF discussed in Chapter IV. The block
diagram of the comprehensive control system is shown if Figure 5.1. Since the input to
the control system is desired angles, it is easily implemented with the master arm which
allows the user to specify a desired end-position while it records desired joint angles.
This control implementation also allows other pre-computed trajectories to be input into

the system for means of comparison.
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Figure 5.1 Block Diagram of Control System

5.2 Input Trajectories

To demonstrate the reduction in tip vibration, the modified command shaping
technique is compared to the original P.D. controller for different input trajectories. For
these comparisons, the trajectories are pre-computed to ensure an equivalent basis for
comparing vibration reduction. The principal trajectory is a three-foot diameter circle
located above the first axis with-a completion time of nine seconds. Figure 5.2 shows
the location of the circle relative to the workspace of RALF. This location was chosen
because there is a large enough variation in system natural frequency to change the
discrete-time period, deln. A sinusoidal perturbation signal with variable frequency is
then added to the radius parameter of the circle to induce vibration into the system.

The vibration of the tip is recorded using two different methods. The first
method is very similar to the way the frequency data was obtained in Chapter IV." The
robot is commanded to follow the desired circle trajectory eight times which eliminates
noise effects and allows reliable averaging of the data. The analyzer records the
transverse acceleration response at the tip and computes the power spectrum of the data.

The magnitude of the frequency response is the root-mean-square of the acceleration and
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(-21.6,175.2>

l 0,00

Figure 5.2 Principal Circle Trajectory

is displayed in units of decibels (dB). Recall the definition of decibels is

number of decibels = 10 log, A S.1)

where 4 is the amplitude in question. The frequency response for each control strategy
is then compared to determine which controller has the smaller amplitude of vibration.

The second method is a visual approach to examine the tip vibration of the robot.
A light-emitting diode (LED) is attached to the end-point of RALF and then one
revolution of the desired circle trajectory is commanded. By leaving the aperture on a

35 mm camera open, the actual end-point path is recorded. Of course, special measures
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are made to ensure that the LED is the only light source imprinted on the negative. At

the end of the trajectory, the flash is triggered to reveal the robot configuration.

5.2.1 Trajectory One - Circle With No Perturbation

The first trajectory is the principal circle with no perturbation added. Figure 5.3
shows a comparison of the frequency response between the P.D. control and Singer’s
original input shaping substituted for the modified command shapixfg. The magnitude of
the frequency response for the input shaping method is greater than that for the P.D.

routine.

Frequency Response
Perturbation Frequency: 0.0 Hz

---- P.D.

—_— 1.S.

RMS of Transverse Acceleration (dB)

101 100 10 102
Log f (Mz)

Figure 5.3 Frequency Response of RALF
P.D. vs. Input Shaping
No Perturbation
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The increase in magnitude of the frequency response for the input shaping method
at the 4.8 Hz frequency value denotes a vibration of the system at the first natural
frequency. This vibration is provoked by the inability of the input shaping to handle
varying system parameters. The sharp peak in the frequency response at the 10 Hz
frequency value is the second natural frequency. However, the modified command
shaping technique is only designed to reduce the vibration at the first natural frequency.

The induced vibration caused by the input shaping method can be seen visually
in Figure 5.6. The path followed by the énd-point using the ordinary P.D. controller is
shown in Figure 5.5. The actual path followed by the end-point of RALF is not a
precise circle because the P.D. controlier does not drive the steady state joint error to
zero.

By implementing the modified command shaping technique, the induced vibration
is eliminated. This result is evident in the frequency response of Figure 5.4 and the
picture given in Figure 5.7. From Figure 5.4, the magnitude is reduced by 20 dB at the
system natural frequency of 4.8 Hz. This results in a vibration that is only 1% of the
amplitude of the original P.D. vibration for this specific frequency. Comparing Figure
5.5 and Figure 5.7, the modified command shaping technique generates almost the same
tip motion as the P.D. controller even though the 4.8 Hz frequency component is

missing.
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Frequency Response
Perturbation Frequency: 0.0 Hz
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Figure 5.4 Frequency Response of RALF
P.D. vs. Modified Command Shaping
No Perturbation

Fiue 5.5 Picture of Tip Motion Using P.D. Control
No Perturbation



Figure 5.6 Picture of Tip Motion Using Input Saping
No Perturbation

Figure 5.7 Picture of Tip Motion Using Modified
Command Shaping - No Perturbation
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5.2.2 Trajectory Two - Circle With 1 Hz Perturbation
This trajectory, shown in Figure 5.8, is the principal circle with a 1 Hz sine wave

with an amplitude of 1.5" riding on the radial component of the circle. This trajectory

Desired T
Perturtstion Fragueney: 1.0 Mz

g0 =40 W -0 =10 © ;0
X ~ Posiisn (in)

Figure 5.8 Circle Trajectory with 1 Hz
Perturbation B

should contain nine "bumps” around the circle since the period is nine seconds. The
frequency response of the modified command shaping versus the P.D. control is shown
in Figure 5.9. Since the command shaping technique was not designed to eliminate 1 Hz
vibration, the two control schemes show comparable results for this frequency range.
However, the modified command shaping reduced the magnitude of vibration by 18 dB
at the system natural frequency value of 4.8 Hz. This results in a vibration that is 1.6%

of the amplitude of the original P.D. vibration at this particular frequency.
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Frequency Response
Perturbation Frequency: 1.0 Hz
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Figure 5.9 Frequency Response of RALF
P.D. vs. Modified Command Shaping
1 Hz Perturbation

5.2.3 Trajectory Three - Circle With 4.8 Hz Perturbation

The purpose of this trajectory, given in Figure 5.10, is to excite the first natural
frequency of the system. Figure 5.11 displays the frequency response comparison for
this trajectory. The difference in magnitude is 32 dB at the system natural frequency of
4.8 Hz which corresponds to 0.06% of the original P.D. vibration amplitude for this
particular frequency. The visual effects are even more impressive. Figure 5.12 shows
the tip motion for the P.D. control effort while Figure 5.13 displays the tip motion for

the modified command shaping. At least visually, the modified command shaping

method appears to completely eliminate the vibration.
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Desired Trojectory
Perusbetion Frequency: 4.8 Mz
200 ¢
190
190 b
i
1180
»
150
140
=30 =40 - =W =10 ] 10
X = Posllien (in)

Figure 5.10 Circle Trajectory with 4.8 Hz
Perturbation '

Frequency Response
Perturbation Frequency: 4.8 Hz

---- P.D.
— NCS.

-20 ¢+

RMS of Transverse Acceleration (dB)

Log f (Hz)

Figure 5.11 Frequency Response of RALF
P.D. vs. Modified Command Shaping

4.8 Hz Perturbation



Figure 5.12 Picture of Tip Motion Using P.D. Control
4.8 Hz Perturbation

Figure 5.13 Picture of Ti Motion Using Modified
Command Shaping - 4.8 Hz Perturbation
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5.2.4 Trajectory Four - Circle with 10 Hz Perturbation
The final circle trajectory, displayed in Figure 5.14, demonstrates the ability of
the modified method to reduce system frequency vibration for input signals that contain

higher frequency components. Figure 5.15 shows a reduction in magnitude at the '

Oesired Trojectory
Perturbolion Fraqguaney: 10.0 He

30 <40 =0 ~20 =10 0 11
X = Ponition (In)

Figure 5.14 Circle Trajectory with 10 Hz
Perturbation

4.8 Hz frequency location of 9 dB. This results in a vibration that is 12.6% of the

amplitude of the original P.D. vibration for this particular frequency.



Frequency Response
Perturbation Frequency: 10.0 Hz

---- P.D.
— NCS.

RMS of Transverse Acceleration (d8)

L
8
[

10~ 100 10! 102
Log f (Hz)

Figure 5.15 Frequency Response of RALF
P.D. vs. Modified Command Shaping
10 Hz Perturbation

5.2.5 Trajectory Five - Pseudo-Step

A step input is often given as a test input because it theoretically contains all the
frequency components. -To simulate a step, a cycloidal motion in joint space was created
with a duration time of 0.2 seconds [30]. Using this pseudo-step input, a ten degree step
was simultaneously given to each joint and a time record was taken of the transverse
acceleration response at the tip. Figure 5.16 shows the desired tip motion with the
starting position at (-4.7,142.9) and Figure 5.17 displays the transverse acceleration
response. Clearly, the amplitude of the time response for the pseudo-step input is

reduced using the modified method. However, notice the delay in the modified command
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Pesudo~Step Trojectory

=
X = Pogilion (in)

Figure 5.16 Pseudo-Step Trajectory
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P.D. vs. Modified Command Shaping

Figure 5.17 Pseudo-Step Response of RALF
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shaping method’s pseudo-step response. This delay is present because the pseudo-step
trajectory holds the robot in the starting joint configuration for ten clock cycles. Since
the sampling rate is 50 Hz, this time delay is 0.2 seconds. Although the robot is
supposed to remain stationary during the hold time, a slight error signal is developed in
the control algorithm which causes the robot to move. This tip motion is large enough
for the amplitude of the transverse acceleration to trigger the analyzer. This slight tip
motion is verified in the Figure 5.18. When the modified command shaping method is
implemented, the amplitude of the small error signal is reduced so that the transverse
acceleration is not large enough to trigger the analyzer. Therefore, the delay experienced
by the modified command shaping method is actually the hold time of the pseudo-step
trajectory.

Figures 5.18 and 5.19 show the pseudo-step responses for each of the control
schemes. The slight tip motion during the hold portion of the trajectory is very evident
and is even more pronounced in the modified command shaping technique case. The
reduction in vibration of the modified command shaping method is apparent from the
smoothness of the trajectory. However, the tip position overshoots the desired final
position. The feedback nature of the control structure together with an underdamped
system is believed to generate this undesirable overshoot. Had the method been

implemented in a feedforward manner as Singer did, this overshoot might be eliminated.
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Figure 5.18 Picture of Tip Motion Using P.D. Control
Pseudo-Step Input

Figure 5.19 Picture of Tip Motion Using Modified
Command Shaping - Pseudo-Step Input
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CHAPTER VI

CONCLUSIONS

6.1 Summary

Singer’s original input shaping idea was introduced and explained using the
equation of motion for a simple second-order system. The constraint equations needed
to yield a vibrationless system were discussed and then multiple impulse amplitudes were
derived for several constraint conditions. A vibration error expression was derived based
on the ratio of the multiple impulse response to the impulse response of a second-order
system. The residual vibration for each case was graphed to determine the effects of
deviation in system parameters. The input shaping method was shown to actually
increase the residual vibration in certain situations when the system parameters are not
accurately specified.

The main intention of this research was to reduce end-point vibration in a
teleoperated system while preserving the 'usefulness of the system motion. Results
verified that the input shaping method can actually induce vibration in systems that have
varying parameters. Therefore, a modified command shaping technique was developed
to alleviate this problem. By varying input perturbations to trajectories in a range of
possible user inputs, the modified command shaping technique proved to reduce vibration

at the system’s first natural frequency. The reduction in amplitude varied from 87.4%
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for the high frequency perturbation to 99.94% for a perturbation frequency near the
system resonance. The acceleration response qf the command shaping to a pseudo-step
input was smaller in amplitude than the regular P.D. control. However, the pseudo-step
response of command shaping displayed overshoot which may be undesirable in many

end-point positioning tasks.

6.2 Contributions

The major contributions of this research are the implementation of teleoperation
on RALF, the new perspective of residual vibration, the visualization of tip motion and
the derivation of a modified command shaping technique.

The implementation of teleoperation on RALF allows users to specify any end-
point trajectory within the workspace. The ability to perform teleoperated experiments
such as cutting and end-point bracing are now possible.

The new definition for residual vibration gives a clearer representation of the
input shaping method. It demonstrates that the input shaping method may not be
effective in reducing residual vibration in all cases.

The visualization method for viewing tip motion using a LED permits easy
evaluation of tip vibration. The method can also estimate the ability of a system to
follow desired tip trajectories.

Finally, the modified command shaping technique expands the use of the original
input shaping idea to systems with varying parameters. The induced vibration caused

when the input shaping method is applied to a variable frequency system is eliminated
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by the command shaping method. By realizing a change in the discrete-time period, the

impulse input is modified to eliminate the possibility of producing the vibration.

6.3 Future Work

The main concern to be addressed in future research is the elimination of
overshoot in the step fesponse of RALF. To have an effective teleoperated system, the
end-point mﬁst be positioned without overshoot. This could be accomplished using the
modified command shaping technique in a feedforward arrangement that is combined
with a feedback control scheme. Another possibility is the implementation of inverse
dynamics with the modified method to accurately position the end-point of RALF.

The second goal is to implement the modified method to eliminate the second
natural frequency of RALF. This would require a faster control system than the
MicroVAX can provide. By using a PC, faster computation and A/D rates are possible
and the elimination of the first two natural frequencies could be achieved.

Finally, the effects of the modified command shaping technique on the stability
of the overall control structure will be investigated. The time delays produced by this
shaping method must be better understood to develop a control scheme that has accurate

end-point tracking capabilities without overshoot.
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APPENDIX A

RIGID BODY TRANSFORMATIONS FOR RALF

Forward kinematics of rigid bodies is used to determine the position and
orientation of the end-effector on a manipulatof. Inverse kinematics, on the other hand,
deals with the problem of finding all the possible joint configurations given the end-
effector position and orientation. Questions often arise with the uniqueness of a given
solution, or even if one exists, with the inverse case.

By using matrix transformations, kinematic equations relating the end-point of a
manipulator to its base can be derived. The process involves representing each degree
of freedom of a manipulator with an individual coordinate system. Each matrix
transformation relates one coordinate system to the previous one. The overall matrix
transformation from the end-point to the base of a robot is obtained by multiplying all
of the matrix transformations in the proper order. Most robotic texts give a thorough
discussion of matrix transformations [11,44].

Although RALF is not a rigid body, the forward and inverse kinematics can be
derived to give an approximate solution for the end-point location and orientation or the
joint configurations. Consider Figure A.1 which shows the rigid body coordinate

systems used for RALF.
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Figure A.1 Rigid Body Coordinate Systems for RALF

The matrix transformations relating each frame are

T

cos(@,) -sin(6,) O 0]
sin(6,) cos(@,) 0 O
0 0 10

0 0 01
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cos(8,) -sin(,) O L,]
sin(@,) cos(®;) 0 L,
0 0 10
|0 0 0 1]
(1 0 0 L]
o 1 0 0
o o 1 of
0 0 0 1]

(A.2)

(A3)

The overall matrix transformation from the end-point to the base of RALF is found by

multiplying the individual transformations as follows

0 0 1 2
3T= lT 2T 3T.

The resulting overall matrix transformation is

0
0

cos(0,+6,) -sin(6,+6,)

0
0
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0  Lycos(8,+8,) +L,cos(8,) - L,sin(8,)]
sin(0,+6,) cos(8,+6;) O  L,sin(B,+6,) +Lsin(8,) +Lcos(8,)

1 :

0

(A4

0
1

(A.5)



Recall that the fourth column of the overall matrix transformation is the position vector.

Therefore, the (x,y) coordinates of the end-point are given in base coordinates by

x = Lycos(8, +8,) + L cos(8,) - L,sin(B,) (A.6)

y = L,sin(8, +6,) + L,sin(6,) + L,cos(B)). (A.7)

Given the two joint angles, the (x,y) coordinates of the end-point can be calculated using
Equations (A.6) and (A.7).
Now consider the inverse problem. Taking the sum of the squares of Equations

(A.6) and (A.7) yields

2 +y =2+ L2+ 2 +2LLcos®) + 2L Lysin@®,).  (AB)

Define K by

stz-ryz—l,f—l,:-l,: (A.9)

so that Equation (A.8) becomes

K = 2L L cos(8,) + 2L,L,sin(8;). (A.10)



Solving for cos(6,) from Equation (A.10) yields

K-2L L sin(8,)

A.ll
TR (A.11)

cos(Bz) =

Notice that Equation (A.11) can not be explicitly solved for 6,. But recall the

trigonometric identity

sin%(8,) + cos?(@,) = 1. (A.12)

Squaring Equation (A.11)

K?-4KL,L,sin(8,) +4L; L}sin*(8,)

cos’(8,) = — (A.13)
aLiL]
and substituting into Equation (A.12) yields
2,2 + . _AT272:02
sin’(8,) = ALK 4K-L’L’szm(2°’) LLsn @) (A.14)
s} L]
Equation (A.14) can be simplified to
272,73y
in(@,) - KL;=L,J4112(L1214> B A15)
2L,(L3 +13)
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Since 6, can not be less than zero, Equation (A.15) becomes

KL,+LJ4L;(L;+L3)-K*
2L, (L3 +13)

sin(8,) =

Substituting Equation (A.16) into Equation (A.11) produces

KL -Ly 4L (L} +15)-K*
2L, (L} +L3)

cos(9,) =

Using Equations (A.16) and (A.17), the solution for 6, becomes

| Kl + Ly 4L - 1) -K°
KL -Ly 4L (L{+L3)-K*

6, = atan

To solve for 6,, Equations (A.6) and (A.7) are expanded to produce

x = (Lycos(8,) +L,)cos(8,) - (L,sin(8,) +L,)sin(8,)

y = (L,sin(B;) +Ly)cos(8,) +(L,cos(8,) +L,)sin(®,) .
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Equations (A.19) and (A.20) are solved for sin(8,) and cos(6,), which are

-x(l,sin(ﬂ,) +I—,) *y(Lgm(ez) "'11)

sin(9,) = — : (A.21)
L} + 13 + L +2 L, (L, cos(8,) +Lysin(8,))
cos(®,) = 2x(l-,zr:osgl",)dq) +y(l-,s:n(0,).+l-,) . (A.22)
L} + L} + L3 +2 L, (L cos(8,) + Lysin(8,))
Using Equations (A.21) and (A.22), the solution for 8, becomes
6, = atan2 'ffﬁiﬁ§’§+'2§*"“°?“"=’*‘x’ . (A.23)
1) +Ly) +y(Lysin(8,) + L)
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So, knowing the (x,y) position of the end-point of RALF, the joint coordinates can be

computed using the following three equations:

K=2+y-01-01-1L) (A.24)
. 27272y _
6, = atan2 KL L‘J“:(L: L’z) K | (A.25)
KL, -Ly/ 4L} (L} + 1) -K*

8, = axanz[_x(l"m(e’)d")w (l’ws(ez)”“)]. (A.26)

x(L,c08(6,) +L)) +y(L,sin(6,) +L;)
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APPENDIX B

DIMENSIONS OF MASTER ARM

Figure B.1 shows the dimensions of the master arm used by the operator to input
desired joint commands. Potentiometers, listed in Appendix C, are placed at each joint
of the master arm to translate the joint commands input by the user into actual joint

motions of RALF.
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Link 1

0.75°
0. 375'

Link 2

0.73°
0. 375'

13/32° 0D

iy

—‘1'5'——‘-] L3’ 0.125° OD

=—10.25"

6.125°

i

0.375° I 1.5

iy

0.3125°

05 d i 15°

10°

lges

Material Used: S5/16’ Aluminum

Figure B.1 Dimensions of Master Arm
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Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:
Company:

Device:
Model No.:
Serial No.:
Company:

Device:
Model No.:
Serial No.:

Company:

APPENDIX C

EQUIPMENT LIST

ELECTRONIC COMPONENTS

MicroVax I
VS21W-A2
WF61305805

Digital Equipment Co.

Real-Time Clock
DT2769
187824-C453
Data Translation

Analog I/O System
DT2785
188872-C496

Data Translation

Dynamic Signal Analyzer
HP3562A

2502A00718
Hewlett-Packard Co.

Disk Storage Unit
HP9122D
2518A44227
Hewlett-Packard Co.

Supply/ Amplifier - Joint one of RALF
BOP36-1.5M

F79808

KEPCO



Device:
Model No.:
Serial No.:

Company:
Device:
Model No.:
Company:

Device:
Model No.:
Company:

Supply/Amplifier - Joint two of RALF
BOP36-5M

F105062

KEPCO

Potentiometer - Joint one of Master
6637
Bourmns

Potentiometer - Joint two of Master
6637
Bourns

SENSORY COMPONENTS

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:

Company:

Device:
Model No.:
Serial No.:
Company:

Device:
Model No.:
Serial No.:
Company:

Device:
Model No.:
Serial No.:
Company:

LDT Position Sensing System - Joint one of RALF
011020050100

20658-02-002P

MTS Systems Corp.

LDT Position Sensing System - Joint two of RALF
011020050100 N
20658-02-001P

MTS Systems Corp.

Analog Output Module - Joint one of RALF
0110200503105001

20658-05-001P

MTS Systems Corp.

Analog Output Module - Joint two of RALF
0110200503105001

20658-04-001P

MTS Systems Corp.

ICP Accelerometer
308B

10430

PCB Piezotronics
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Device: Power Unit
Model No.: 480D06
Serial No.: 5163
Company: PCB Piezotronics

HYDRAULIC COMPONENTS

Device: A.C. Motor
Model No.: 2U2100
Serial No.: D-75

Company: Delco

Device: Vickers Variable Volume Piston Pump
Model No.: F3-PVB20-FRS-20-C-11
Company: Sperry Rand Corp.

Device: Hydraulic Valve - Joint one of RALF
Model No.: 73-102A
Serial No.: 144
Company: Moog, Inc.

Device: Hydraulic Valve - Joint two of RALF
Model No.: 73-102A
Serial No.: 147
Company: Moog, Inc.

Device: Hydraulic Cylinder - Joint one of RALF
Model No.: H-PB-2
Serial No.: 37781-J
Company: Atlas Cylinder Corp.

Device: Hydraulic Cylinder - Joint two of RALF
Model No.: N2C-3.25x40
Serial No.: 5C8205-065-1B
Company: Hydro-Line Mfg. Co.

86



APPENDIX D

IMPULSE RESPONSE OF A SECOND-ORDER SYSTEM

LA AU A A

k =) C

" T
!

F(t)

Figure D.1 Spring-Mass-Damper System

Recall that Newton’s second law is

Y Fema. ®.1
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Newton’s second law applied to the simple system shown in Figure D.1 yields

dx d*x
F() -kx-c-d—t =m—dt-z- D.2)
which can be rearranged to get
2
mEE L& k- F). ®D.3)
dr? dt

Dividing through by the mass, the system equation becomes

dx  cdx k. _FO ©.4)

dt: md m m

By definition, the natural frequency of a second-order system is

o, =X (D.5)
m
and the damping ratio is
{ = —. | (D.6)
2/km
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Substituting into the system equation,

2 2 )
4=, 2Cw.£ +olx = 2 F). ®-D
dr? dt c

By defining an impulse force as

fo = 22 ®.8)
the system equation becomes
d? dx
Z.;E + 200, — + 02x = 02f0. D.9)
Let the impulse force have the form
) =Ad(t - 1) (D.10)

where A is an amplitude and 5(7) is the Dirac delta function. A Dirac delta function is
defined mathematically in Equation (D.11) and is displayed in Figure D.2 on the

following page.

[Tac-1) =1 (D.11)
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Figure D.2 Dirac Delta Function

™

From Figure D.2, it is apparent that the Dirac delta function has an amplitude of
1/(time). The impulse function f{r), given in Equation (D.10), must have units of
length. This results in the émpﬁmde A having units of (length*time). It is sometimes
very helpful to conduct unit analysis of this type to better understand the physics of the
problem.

The new system equation becomes

— +2{o Z +0lix = 02A8(t-1,). (D.12)

Recall the definition of the Laplace Transform

F(s) = fo “f(H)e™ds. (D.13)



Taking the Laplace Transform of the system equation assuming zero initial conditions

yields

sX(s) + 2L @, 5X(5) + 0,2X(s) = Aw2e™ (D.14)

which can be rearranged to get

2,7
XQ) = —m ©.15)

2 2
st +2lw,s + 0,

Partial fraction expansion of the equation yields

» sty
X(s) = 122aC 1 - 1 . D.16)

2/1-0% |s+ o, sjof1-3  s+{o, -joy1-2

The inverse Laplace Transform of this expression is

J.A“’-_(e'("‘-’f"-'/‘_‘g)("‘o) - e-(cu'-ju'm)(r-'o)) (©.17)
2y1-¢

x(t) =
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which is just

A e Suali-n) ejo_Jl-c’(r-x,) _ e-;o,Jl-c’(:-c.)

x() = A : (D.18)
Vi-¢ 2J
Recalling the Euler representation for sine is
i _ g-is
sin(g) = f_'_f._, (D.19)
2j
the second-order system response to an impulse force becomes
A e fesl-t)
x(1) = —* - sin(m';/l -3 -to)). (D.20)
1-¢
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APPENDIX E

SUMMATION OF TWO SINUSOIDS

The following two sinusoidal responses,

x,(0) =B,sin(at+,)

x,(t) =B,sin(at+¢,)

can be linearly combined to form a total response, x(f), where

x(t) = B,sin(at + ¢, ) + B,sin(at +¢,) .

Recall that

sin(a + b) =sin(a) cos(b) + sin(b) cos(a) .

So the total response becomes

x(t) = B, [sin(at) cos(d,) +sin($,) cos(a#)] + B,[sin(ar) cos(¢,) +sin(¢,) cos(an]
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which is just

x(t) =[B,cos(é,) + B,cos(,)]sin(a?) +[B,sin(é,) + B,sin(¢,)] cos(a?).

Recall that the Euler representations for sine and cosine are

sin(w) = cos(w) =

eio _e-jo e]a *e-jo
E.7) .
2j 2
Substituting,

o Jut

] +[B,sin(¢,) + B,sin(¢,)] [ ¢ 2

at _ , ~jut
x(0) =[B,cos(d,) +B,cos(¢,)l[‘1 :

Rearranging the coefficients of the exponential terms,

- Jut
x(¢) =[(B,cos($,) + B,cos(4,)) +j(B,sin(é,) +B,sin(¢,»152-j—

~jut
- [(B,cos(d,) + B,cos(d,)) -j(B,sin(,) + zsm(¢2))]£27'

Recall that any complex number can be written in the form

z=rel®

where r is the magnitude and § is the phase.
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Using this idea, x(7) can be expanded as follows

.113‘. D* B.sin($,)
x.en«.)*z,eo-(w e’“

x(1) = L/ [B,cos(d,) + B;cos(¢,))* + [Bysin($,) + stin(tbz)]’

an! 31“(.1) + l}ﬁﬂ(ﬁ) )
- |/iB;cos(®,) + Bycos($,))* + [B;sin(é,) + B;sin(d z)]z l,a-«l) Byco®)

(E. 12)
and simplifying,
2= [ |/[Bicos(@,) + Broos(@,)T + B sin(d,) + Bsin(®,)T” |
,_ I ) e )
and recalling the Euler representation for sine,
x(0)= | | TBycos(ey) = Byeos(@P + [Bysin(,) + Bsin(é)I”
(E.14)

+ sin] ar +tag-1f D0 + Bysin(®y) )
B,cos($,) + B,cos(d,) ||
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This result can be rewritten as

x(t) = B,., sin(at + ¥)

where

B, = |/ [B,cos(d,) + Bcos(d,))* + [ B;sin(é,) + B;sin($,)]?

v =t B sin(d,) + B,sin(¢,)
B,cos($,) + B,cos(d,) |
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This result can now be generalized. The total response, x(f), which is the linear

combination of N sinusoidal responses can be written as

x(t) =B, sin(at + ) (E.18)
where
N 2 [N 2
B, = \“E Bkcos(¢k)] +[E BkSin(¢k)] (E.19)
k=1 kel
N
Y B,sin(4,)
¥ o=t S—— | (E.20)
E Bk008(¢k)

k=1
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APPENDIX F

CALCULATIONS FOR TWO IMPULSES

The constraint equations that must be satisfied are

BIOOS(¢1) *320“(¢2) =0 (F.1)
B,sin(6,) + B,sin(¢;) = 0 &2
‘where
Bk = Alwl e'c".("‘u) (F.3)
1-¢2
and
& = - 0,0 T-C. F.4)

Notice that there are four unknowns (A,, A, #; and f,) and only two constraint
equations. The other two constraints are the starting time of the first impulse and the

normalization of the amplitudes.
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Pick ¢, = 0 so that Equations (F.1) and (F.2) become

B, +Bcos(é;) = 0 (E.5)

B,sin(¢,) = 0. (F.6)

The two solutions that exist for Equation (F.6) are either B, = 0 or

¢, = nx E.D

where n = + 0,1,2,3,... . Avoiding the trivial solution, pick n = -1 so that

$, = -x. (F.8)

From Equation (F.4), the second impulse occurs in time at

by = —0—- F.9)

Substituting Equation (F.8) into Equation (F.5) yields

B, = B,. (F.10)



At t = 15, Equation (F.10) produces

Alml e'(ﬂ.('u“ﬂ) = Aiwl e’(".(‘u"gg) (F.ll)

1-¢% y1-¢2

or
IS
Ay =Ae VI8, .12
If the amplitudes are normalized so that
2
T4, =1 (F.13)
i=1
and let
-__G.:_ (F. 14)
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then the amplitudes of the two impulses and the times at which they occur are

1
A = YT, (F.15) 1o, = 0 (F.16)
A, = M F.17) foz = —_—. (F.18)
1+M o, y1-¢

Now that the amplitudes and times of the impulses are known, the theoretical impulse

response of a second-order system can be found using the results from Appendix D.
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APPENDIX G

CALCULATIONS FOR THREE IMPULSES

The constraint equations that must be satisfied are

B, cos(4,) + B,cos(d,) + Bycos(¢,) = 0 G.1)
Blm(¢;) + BzSin(¢3) + 8331!1(¢3) =0 (G.2)
B,t,,cos(¢,) + B,ty,c08(d,) + Bytgscos(d;) =0 (G.3)
B,t,,sin(¢,) + Byt,sin(d,) + Bytyysin(¢;) = 0 (G.49)
where
B, - A0 -tout-t (G.5)
1-¢2

102



and

&) = - 0,01 -C% (G.6)

Notice that there are six unknowns (4;, A,, 4;, fo;, fe and &) and only four constraint
equations. The other two constraints are the starting time of the first impulse and the
normalization of the amplitudes.

Pick #,; = O so that Equations (G.1) through (G.4) become

B, + B,cos($;) + Byoos(6;) = 0 G.7)
B,sin(¢,) + Bysin(¢;) = 0 G.8)
B,t,,cos(,) +B3t°,cos(;1>3) =0 (G.9)
B,t,,sin(d,) + Byty;sin(d,) = 0. (G.10)
From Equation (G.8),
B,sin(¢,) = - B,sin(¢,) (G.11)
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which is substituted into Equation (G.10) to produce

B, (2,, - £,,)sin(d;) = 0. (G.12)

The three solutions that exist for Equation (G.12) are

B, =0 G.13)
fo3~fo = 0 (G.14)
&, = nn (G.19)

where n = + 0,1,2,3,... . Avoiding the trivial solutions, pick n = -2 so that

¢, = -2x. (G.16)

From Equation (G.6), the third impulse occurs in time at

2=

2y, = ————.
03 . T

(G.17)
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Substituting Equation (G.16) into Equation (G.8) yields

B,sin(¢,) = 0. (G.18)

The two solutions that exist for Equation (G.18) are

B,=0 (G.19)
¢2 =nNnN (G.20)

where n = + 0,1,2,3,... . Avoiding the trivial solution, pick n = -1 so that
¢, = -=®. (G.21)

From Equation (G.6), the second impulse occurs in time at

n
ty, = ———— (G.22)

wly/l—(z.

Now that the times at which the impulses occur is known, the amplitudes of the three
impulses can be found. Substituting Equations (G.16) and (G.21) into Equations (G.7)

and (G.9) produces

B,-B,+B, =0 (G.23)
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- B,t,, + Byt = 0.

From Equations (G.17) and (G.22), the relationship between the times is

Substituting this time relationship into Equation (G.24) yields

B, = 2B,

At t = 1, Equation (G.26) produces

Az"’u e-(".('ez“oz) = 2‘41@-"(“.(‘”"01)

yi-¢ 1-¢

or
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At ¢ = 15, Equation (G.27) produces

A0, -e-c"’.(‘O,-‘O’) = ———Al On e~ Sonller ~for) (G.30)
1-¢ 1-¢
or
2=
; G.31
Ay =Aje V7€ .

If the amplitudes are normalized so that

3
E A =1 (G.32)
iwl

and let

My —— (G.33)
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then the amplitudes of the three impulses and the times at which they occur are

1

S S— G.34 t.. =0 G.35

L 1e2M e M? @39 o ©33)

®

A, = __2M__ (G.36) b2 = —— (G.37)
1+2M + M? 0, 1-¢
M? 25

A, = —2 (G.38) loy = + (G.39)
S 1e2M+M? 0 1-¢

Now that the amplitudes and times of the impulses are known, the theoretical impulse

response of a second-order system can be found using the results from Appendix D.
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APPENDIX H

CALCULATIONS FOR FOUR IMPULSES

The constraint equations that must be satisfied are

B,cos(d,) + B,cos(4,) + B;cos(d;) + B,cos(d,) = 0

B,sin(,) + B,sin(,) + Bysin(¥;) + B,sin(4,) = 0

B,t,,cos(,) + B,tg,c08(4;) + B,t,,cos(d,) + Bty cos(d,) = 0

B, ty,sin(®,) + B,1o,sin(¢,) + B,ty,sin($;) + B,ty,sin(¢,) = 0

Bt cos(d,) + B, 15,c05($,) + B, ta;cos(,) + B,ta,cos(¢,) = 0

B,t},sin($,) + B, to,sin(d,) + B,t3,sin(d5) + B,,sin(d,) = 0
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where

2. (e, (t-1y) H.7)

B, =
1-¢2

i

and

0 = - oyt T T @8

Notice that there are eight unknowns (A;, A,, Ay, A,, o, Lo las and 1,) and only six
constraint equations. The other two constraints are the starting time of the first impulse
and the normalization of the amplitudes.

Pick 7,, = 0 so that Equations (H.1) through (H.6) become

B, + B,cos(®,) + B,cos(d,) + B,cos(d,) = 0 @.9)
B,sin(¢,) + Bysin(,) + B sin(¢,) = 0 (H.10)
B,t,,c08($,) + Byto;cos(dy) + Bty cos(d,) = 0 (H.11)
B,ty,sin(d,) + Bytyysin(d,) + By, sin(¢,) = 0 (H.12)
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B,t2,cos(d,) + Bytoycos(d,) + Byta,cos(,) = 0 H.13)

B,t2%,sin($,) + Bytaysin(;) + B,t3,sin(4,) = 0. (H.14)

From Equation (H.10),

B,sin(¢,) = - [B,sin($,) + B;sin(¢,)] (H.15)

which is substituted into Equations (H.12) and (H.14) to produce

B,(2y; = t5,)sin($;) + B (2y, - t5;)sin(¢,) = 0 (H.16)

B, (12, - 3)sin(,) + B, (13, - t3,)sin(d,) = 0. ®.17)

Solving for B, from Equation (H.16) and substituting into Equation (H.17) yields

B,(ty, - to3)sin(d,) = 0. (H.18)

The three solutions that exist for Equation (H.18) are

B, =0 (H.19)
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foe ~tos = O (H.20)

o, = nm (H.21)

where n = + 0,1,2,3,... . Avoiding the trivial solutions, pick n = -3 so that

¢, = -3n. (H.22)

From Equation (H.8), the fourth impulse occurs in time at

fog = —/——- (H.23)

Substituting Equation (H.22) into Equation (H.16) yields

By(ty3 - t,)sin(d,) = 0. (H.24)

The three solutions that exist for Equation (H.24) are

B, =0 (H.25)
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tos - fa = O (L.26)

¢, =n=x H.27)
where n = + 0,1,2,3,... . Avoiding the trivial solutions, pick n = -2 so that
¢y = -2=m. (H.28)

From Equation (H.8), the third impulse occurs in time at

t = ._.._2..5_ (H 29)
03 . .
o.y/ 1-¢2
Substituting Equations (H.22) and (H.28) into Equation (H.10) yields
Bysin(¢,) = 0. (H.30)
The two solutions that exist for Equation (H.30) are
B,=0 (H.31)
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¢, =n= (H.32)

where n = + 0,1,2,3,... . Avoiding the trivial solution, pick n = -1 so that

¢, = -=x. (H.33)

From Equation (H.8), the second impulse occurs in time at

ty, = ————. (H.34)
wW1-¢2

Now that the times at which the impulses occur is known, the amplitudes of the four
impulses can be found. Substituting Equations (H.22), (H.28) and (H.33) into Equations

(H.9), (H.11) and (H.13) produces

B, -B,+B,-B, =0 (H.35)
- B,ty, +Byt, - Bty = 0 (H.36)
- Bty + Byt - Bty = 0. (H.37)
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From Equations (H.23), (H.29) and (H.34), the relationships between the times are

tos = 2%, (H.38)

to, = 3o, (H.39)

Substituting these time relationships into Equations (H.36) and (H.37) yields

B, = 3B, (H.40)
B, = 3B, (H.41)
B, =B. - (H.42)

At = t,,, Equation (H.40) produces

A, PRI (fea-te2) o 34,0, e (oalfa” to1) (H.43)

1-¢ 1-¢
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or

At ¢t = 1, Equation (H.41) produces

4,0, e (osllestoy) 34, wle = (o, (t9y = 401)

1-2 1-¢2

or

rig

Ay =3A,e VI°0,

At r = t,,, Equation (H.42) produces

Ao, PRI CHCVEL WS Ao, PRT CHOVELW
1-¢2 1-¢*
or
. 3=
A, =Ae V1€
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If the amplitudes are normalized so that

4 .
Y41 (H.49)

i=1

and let

(H.50)

then the amplitudes of the four impulses and the times at which they occur are

4, - ! @.51) foy = 0 ®.52)
1+3M +3M*+ M?

L
A, = 3M (H.53) fyg = ———  (H.54)
1+3M+3M2+ M? wy1-¢?
= . 03 .
P 1+3M+3M2 e MP o 1-3
M3 - 3=n
A, = H.57) foa = —0—— (H.58)
1+3M+3M*+ M? w,y1-¢2
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Now that the amplitudes and times of the impulses are known, the theoretical impulse

response of a second-order system can be found using the results from Appendix D.
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APPENDIX I

CALCULATIONS FOR DEVIATIONS IN NATURAL FREQUENCY

This appendix evaluates the residual vibration of the input shaping technique when
the actual natural frequency, w,, deviates from the design natural frequency, w,. The
magnitude of the residual vibration is important since the iinpulse characteristics, used
for input shaping, are based on the design natural frequency values.

Using the results derived in Appendix D, the actual response of a second-order

system to an impulse of unity gain is

@

x,(1) = —2— ¢ **'sin(w,y1-Ct). @1
1-¢2 )

If the single impulse is divided into two impulses with characteristics derived in

Appendix F, the actual response for 7 = 1, becomes

x,,(1) = x,(2) +x,(2) 1.2
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where

1
—_—,
xl(t) = ___*_l_ze"“.'sin(wn"l - czt) (1-3)
1-{
M @
x,(2) = %f‘"‘“"") sin(w,;/l -3 -toz)). .4

Using the results derived in Appendix E, the actual system response to the two impulse

input for ¢ = t,, can be expressed as

x,,(t) = B, sin(at+y,,) @1.5)
where
1 . . e
e 1-—= 1-—£
B, - M1 e-c«.xJ l+2M( .,)cos(ggﬂ)+u( u_) (1.6)
1-¢2 w,
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| M(I%)mn[-::— “LW

1+M("%2)ws(&u)

)

¥, = - tan"!

@,

\

To determine the amount of residual vibration, a vibration error expression must
be defined. The error, denoted err, can be expressed as the ratio of the actual multiple
impulse response magnitude to the actual impulse response magnitude of a second-order
system. The error expression is defined only for time after the multiple impulse input
has occurred to ensure that the system has received identical amplitude inputs.
Mathematically, this is written as

- e for t21, .8

r = ’
[%e($)]

where k is the number of impulses. The residual vibration is the vibration error
expressed as a percentage. Using Equations (I.1) and (1.5), the vibration error for the

two impulse input becomes

lxza(‘)J = 1 Jl+2M(1“:_"')cos &n +M2(l--"’_:> .9
|x¢(t)| M+1 [m ] )
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If the single impulse is divided into three impulses with characteristics derived in

Appendix G, the actual response for ¢ 2 1, becomes

x5, (8) = x,(2) +x,(2) +x4(2) 1.10)

where

1+2M+ M? I.11)

x,(2) = T ¢"°“sin(¢.;‘ 1- (zt)

2M

— 0,
x,(2) = l+2M+3:2 e'“‘(""’)sin(w,ﬁ-—cz(t-toz)) 1.12)
1-¢

M2
At A —————— 0‘
x,(8) = 1+2M+M? o Coult=tey) sin(m‘ e (e "oa))- 1.13)

y1-¢2

Using the results derived in Appendix E, the actual system response to the three impulse

input for r = t, can be expressed as

x,,(f) = B, sin(at+y,,) @.14)
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where

1
—_—-
1+2M+ M2 ¢ St .15
BSa = ‘ J(d‘"sa) (numh)z (I )
1-¢2
et M3 .16
v, - -tan [de) .16

with

num,, I -t [wu]m("_) (2_,,) @17

Substituting Equations (I.1) and (I.14) into Equation (1.8), the vibration error for the

three impulse input becomes

%34(%) 1
‘lJo’,(t)Jl ) 1+2M + M? ﬂden3‘)2+(num“)z ) @.19)
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If the single impulse is divided into four impulses with characteristics derived in

Appendix H, the actual response for ¢ 2 f,, becomes

X, () = x,(2) +x,(2) +x,(8) +x,(1) (1.20)
where
1 (2
2 a
x, (1) = 1+3M+3M :M:’ e'“"sin(w.\/—l-—czt) @.21)
1-¢
3IM ©
+ +3M2+ M? ° ite-ty) .
x,(1) = 1+3M 3M2 M PRITX ”)SIn(w‘s/l-_Cz(t-toz)) 1.22)
1-{
IM? ©
+ + 2. M3 ¢ . @ (- . 23
x,(1) = 1+3M :’oM2 M RN '°’)sm(o‘\/1-—('2(t-to,)) (1.23)
1-¢
M3
©
ToM® ° ottt 24
x, (1) = 1+3M +3M - M PEAC '“)sm(w,\/l-_Cz(t-to‘)). @.24)
1-¢
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Using the results derived in Appendix E, the actual system response to the four impulse

input for ¢ 2 1, can be expressed as

x.,(0) = B, sin(at+y,,) 1.25)
where
1 W
2 3 ¢
B,, = 1+3M+3M*+M e tod \f(den“)z R (num“)z (1.26)
1-¢2
num
= _m'l —_44 (1'27)
"’44 [ denAa )
with
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Substituting Equations (I.1) and (I.25) into Equation (I.8), the vibration error for

the four impulse input becomes

|xla(t)l = 1
|x(8)]  [1+3M+3M%+M?

\/(den“ )z Jr(num“)2 . (1.30)
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APPENDIX J

CALCULATIONS FOR DEVIATIONS IN DAMPING RATIO

This appendix evaluates the residual vibration of the input shaping technique when
the actual damping ratio, {,, deviates from the design damping ratio, {. The magnitude
of the residual vibration is important since the impulse characteristics, used for input
shaping, are based on the design damping ratio values.

Using the results derived in Appendix D, the actual response of a second-order

system to an impulse of unity gain is

x,(2) = O 2e'c‘""sin(0.\/1 -C:t). 3.1

1-¢,

If the single impulse is divided into two impulses with characteristics derived in

Appendix F, the actual response for 1 = 1, becomes

x,,(t) = x,(¢) +x,(1) 3.2)
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where

1
— Q.
50 = Lot ain(o,f1- ) 0.3
1-¢
M w
x,(1) = M+l " e“-"-"""’sin(o. n-c Cf(‘-'oz))- (3.4

1-8

Using the results derived in Appendix E, the actual system response to the two impulse

input for ¢ = f,, can be expressed as

x,,(t) = B, sin(at+y,,) d.5)
where
e (1) [ w4
Bz, = M+1 c-c‘o_t 1+2M ¢/ cos|n e M [4 (16)
- 1-¢
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\
S
M("?)sin[,, 1"5]
V,, = -tan” N1-¢ a.mn
& 2
1 +M(l-7)cos(u 1 C.]
\ 1-2%))

To determine the amount of residual vibration, a vibration error expression must
be defined. The error, denoted err, can be expressed as the ratio of the actual multiple
impulse response magnitude to the actual impulse response magnitude of a second-order
system. The error expression is defined only for time after the multiple impulse input
has occurred to ensure that the system has received identical amplitude inputs.
Mathematically, this is written as

err = Jf:‘(—(:))l-l ,Jor 21, J.8)

where k is the number of impulses. The residual vibration is the vibration error
expressed as a percentage. Using Equations (J.1) and (J.5), the vibration error for the

two impulse input becomes

L Ce
ENCININT FRR DN G| N
|xa(8)] M+1 1-¢2
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If the single impulse is divided into three impulses with characteristics derived in

Appendix G, the actual response for r 2 1, becomes

X3, (1) = x,(2) +x,(2) +x,(1) (J.10)
where
1
x,(1) = 1o2M . M7 e"‘“"sin(w. l-Cit) a1
1-3
2M ©
xz(t) = 1 +2M+Mzz e-c.“.('-‘.g)sin(m. ’1 - c:(t-toz)) (1.12)
1-{,
MZ
—_—
+ +M2 " T . .
x,(1) = 1+2M b: ¢~ Caoul '°’)sln(0.fl—-—C:(t—z°3)). (.13)
1-,

Using the results derived in Appendix E, the actual system response to the three impulse

input for 1 2 1, can be expressed as

x,,(t) = B, sin(at+y,,) (.14)
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where

1
S ————————— Q
1+2M+« M2 " ¢, 1.
B,, = ¢ "\ (deny, ) + (num,,)? {d.15)
1-¢
num
= —m-l _3¢ J.16

with

- e & r~ 2
den,, = 1+2M(1 C)cos[ﬂ 1 C.]+Mz(x c)cos[Z‘lt 1 (4]‘ (1.18)
1_(2 l_cz

Substituting Equations (J.1) and (J.14) into Equation (J.8), the vibration error for the

three impulse input becomes

x3,(1) 1
llxs.(# T |Te2mem? y(dens, ) + (numy, )| .19
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If the single impulse is divided into four impulses with characteristics derived in

Appendix H, the actual response for r = 1,, becomes

X, (1) = x,(8) +x,(2) +x,(2) +x,(2) 3.20)
where
1 @
x, (1) = 1+3M+3M2+ M3 e-(.o.tsin(u' /1 _ C:t} 3.21)

1-4

3IM
W
2 3 &
1 + 3M+3M +M e'c...("’.z) ﬂ-n(m' l - Ci(t _toz)) (1.22)

1-¢

x,(1) =

3IM?

W
+ + 2oM? " g . .
rn = 123 :«xM2 M2 oottt ol [T 02 - 1)) @2
1-{,

MS
(A
2 3 » ot~ .
x,(0) = 1+3M+3M*+ M® " -qo0 ‘“’sm(o, /‘—1_(:(‘_,0‘))‘ (3.24)

1-4,
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Using the results derived in Appendix E, the actual system response to the four impulse

input for ¢ = #,, can be expressed as

x,,(1) = B, sin(at+y,,) (.25)
where
1 ")
1+3M+3M2+M® " —cou .
B‘. = - e (o, ﬁd‘n“)z +(m“)2 (J 26)
1-,
— P 12
P, = —tan [_den“) J.27)
with
L _r? L 2
num,, =3M ‘)sin[ﬂ ! c;]+3M2(l ‘)sin[Zn : C;]
1-¢ 1-3)  @g.28
L _r
+M3( ‘)sm[Sn' . C.]
N1-¢2
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L - L _ 72
den,, = 1-0-3M(1 ‘)cos[n ! CEJ+3M2(1 C)cos[Z‘n 11 C;]
1-¢ 1-¢%) g.29)

& ~
+M3(1?¢0631t 1 C:

Substituting Equations (J.1) and (J.25) into Equation (J.8), the vibration error for

the four impulse input becomes

X (] | 1
|%(] |1+3M+3M*+M>

v (deng, )+ (num,, | (3.30)
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APPENDIX K

CIRCUIT FOR ACQUIRING FREQUENCY DATA

The circuit shown in Figure K.1 was used to combine the control signal from the
MicroVAX with a random noise signal from the HP Analyzer. This new signal was then

input to the KEPCO amplifier that drives the hydraulic valve for joint one.
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O—
+

MicroVAX

S KEPCO
_; amp

HP *
Analyzer

—]

Figure K.1 Circuit Used to Combine Random Noise with Control Signal

The resistor values are chosen to insure proper impedance matching of the various
system components. The resistor values used are

R, = 10kQ
R, = 0.1 - 10 k0.

NOTE: The KEPCO amplifier requires its input device to have an impedance higher than
the operational amplifier (op amp) can supply. Therefore, R, must be used to increase

the overall back impedance of the op amp.
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APPENDIX L

LEAST-SQUARES REGRESSION OF EXPERIMENTAL DATA

This appendix shows how a least-squares curve fit was derived from the
experimental data. A polynomial regression that is a function of 6, and 8, will be
developed for the damped natural frequency, f,, and the damping ratio, {. A full
discussion of linear regressions can be found in [10].

Consider the following 3™-order polynomial

y = b6} +b,65+ b6, +a,0] +a,6] +a,6, +a,. @.1)

The sum of the squares of the residuals is

N
2
S, = E()’i -a,-4a,8,; -azef‘ '“36:1 -b,8,, - bze§1 - baeg:) *.2)

r
i=1

where N is the number of data points. Take the derivative of Equation (L.2) with respect

to each of the unknown coefficients of the polynomial to get

as, N
a. -ZE(y,-ao—a,GU-azef,—a,Bf,-b,Ou-szi,—b,G:i) .3)
0 i=1
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as, N 2 3 2 3\ @L.4)
Ba, > 9“()', -ay-a,0,,-a,6),-a,0,,- 5,6, - b,6;, - b362‘) '
1 =l

as, ad
EL =-2) H ()’1 -6y-a,0, - “zefi - “39131 - 5,8, - bzegl - b3e§‘) @©-3)
2 i=1

as al
aa' =-2) CH ()'x -8y-a,8,,- azefi - 036:‘ -5,8,, - bzﬂit - b3e;‘) @-6)
3 i=]

N
5)1 = '22 0,, ()'t -a,-a,0,, - azﬂf, - a,ﬁfi -5,0, - bzegi - bSG;‘) .7
1 i=1

35, | _,yg2 2 _ 0,0, - b,0,, - b2, - b,63) LB
-é-b—=-2292,()‘,‘ao‘aleu'azeu'a:eu' 192 " ¥3Y2; 7 9 2.') )
2 i=1

N
a_bL =-2) H ()’: ~6,-a,8,,- azeii - “39?1 -b,8, - bzeii - b,ﬁ;,). @9
3 i=1
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Equations (L.3) through (L.9) can be set equal to zero to minimize S,. Rearranging the
previously mentioned equations yields a linear equation with respect to the unknown

coefficients of the form

[A]R =7 (L.10)
where
N LA L N LA LA ]
N E 6, PN P P E 6y 3 6y
il i=1 i=1 i=1 i=1 i=1
f;e zn:e’ }"’;e’ zn:e‘ fje 6 ie 6; fje 0;
1 u Y] " 1iV2i 1921 1i Va2t
i=1 i=1 i=1 i=1 i=1 ie1 i=1
AP A o o4 PR A A o2 o2 2 a3
Y 6 p3L-Y PN p3LY Y 619, Y 61,6 E 61:62
i=1 i=1 i=1 i=1 iel i=1 i=1
N N N N N N
[4] = Zl: 9131 ' ‘Zl: e:(. Ex 9151 El 6:( g 6,’,62‘ 2; 8“92, 2 euezt
= - i= i= - j=
ée f:e 8 fje e; f:e 8; Ee’ Ee’ Ze‘
2i 2iV1i 2i%1 2iV1i 24 2i 2i
i=1 i=1 i=1 i=1 i=1 i=1 i=1
N N N L L
‘21: 61 g 0,0, ‘2:, 021011 E 62,91, 2 921 g 6 g 8
NN N N,
Y 6y Y 6,6, ) ezteu E 62,6“ Z 921 - E ezt
| i=1 i=1 i=1 i=1 i=1
L. 11)
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and

Ny

pIR7

i=1

E 8, ¥

i=]

2 elzl Yi

is1

2 e:l Yi

i=1

Eez.- Y

i=1

E e;t Y,

i=1

| =1
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The unknown coefficients can now be easily solved for by

¥ =[A]'Z. (L.14)

A MATLAB program was used to evaluate Equation (L.14) using the
experimental data from Chapter IV. The resulting equations for the damped natural
frequency and damping ratio are

£,(6,,8,) = -0.42126} + 1.808662 - 2.14418, - 0.22296]

(L.15)
+1.454067 - 3.63926, +7.7830

and

{(6,,8,) = - 0.42696] + 1.89186 - 2.71596, - 0.05336;

(L.16)
+0.341067 - 0.61486, + 1.6762..
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